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ABSTRACT 

The dyadic formulation of general relativity is used systematically 
to discuss rigid congruences in Einstein space-time. For space-time of 
uniform curvature, the quotient space metrics of rotating and accel- 
erating rigid bodies are obtained. For Einstein space-time of non- 
uniform curvature, all irrotational, nonisometric, rigid motions are 
explicitly displayed. They have one degree of freedom, and occur only 
in degenerate static metrics of Class B. Rotating rigid congruences in 
Einstein space-time of nonuniform curvature are shown to have no 
degrees of freedom. Their evolution is, in fact, found to be governed 
by a complete set of 14 first-order total differential equations, linear 
in the time derivatives of the dyadic variables. Such rotating motions 
are shown further to be constrained by a set of algebraic conditions; 
the implication of this for the validity of the Herglotz-Noether theorem 
in Einstein space-time is discussed. 

1. INTRODUCTION 

In 1908, Max Born (Ref. 1) proposed a Lorentz- 
covariant kinematic definition of rigidity in special rela- 
tivity based on constancy of proper distance between 
adjacent material points. His definition seems appropriate 
for a rigid body, as it is mathematically equivalent to the 
vanishing of the rate-of-strain tensor. Born's constraint 
may also be geometrically characterized by the statement 
that the metric of the local 3-space (quotient space), 
orthogonal to the world lines of the rigid body, is con- 
stant through time. 

It was soon demonstrated independently by G. Herglotz 
and F. Noether (Refs. 2 and 3) that, in the Minkowski 

space-time of special relativity, this constraint leads to 
the surprising result that a rigid body, so defined, has in 
general only three degrees of freedom. Almost all allowed 
rigid motions are nonrotating. The very few special 
motions with rotation have the property that both the 
absolute acceleration and angular velocity vectors at each 
point of the body are constant in time relative to the 
body. This latter class of motions is, in fact, identical 
with the ten-parameter family of isometries of Minkowski 
space-time (transformations which carry the entire four- 
dimensional manifold into itself). This result, stating that 
the only allowed rigid motions with rotation are isom- 
etries of the space-time manifold, is today often referred 
to as the Herglotz-Noether theorem. 

1 



, a .  . ‘ 4  I 

I 

JPL TECHNICAL REPORT NO. 32-868 

Their proof of the theorem for flat space-time led to 
the conclusion that the ordinary physical concept of rigid- 
ity cannot be successfully incorporated in special rela- 
tivity. Little further work on the subject appeared until 
much later when its possible importance for the general 
theory of relativity emerged as in, for example, the re- 
marks of Synge (Ref. 4). The constraint of vanishing 
rate of strain may be carried over directly into general 
relativity (Refs. 5 and 6). Such rigid motions in curved 
space-time are of considerable interest: (1) mathemati- 
cally for their possible use in the invariant geometric anal- 
ysis of the structure and global properties of Riemannian 
manifolds, analogous to that based on the more restricted 
isometries; and (2) physically for attaining a better under- 
standing of the imprecise concept of rigidity so often 
implicitly involved in the interpretation of relativistic 
experiments, e.g., the Pound-Rebka red-shift experiment. 

The investigation of possible Born rigid motions in 
general relativity divides rather naturally into two differ- 
ent categories: 

(1) The simplest is the study of test rigid bodies, which 
have zero (or at least negligible) stress-energy 
densities and so do not themselves contribute to 
the space-time curvature. 

(2) The study of the dynarnical rigid -body having a 
nonneglectable stress-energy tensor. 

A further important distinction must be made according 
to whether the space occupied by the rigid body contains 
stress-energy arising from other physical entities, in addi- 
tion to any associated with the rigid body itself. It is usual 
to adopt the attitude that situations having superimposed, 
foreign, stress-energy through which the rigid body moves 
are of lesser physical interest, and so exclude them. The 
problem of test rigid bodies is accordingly restricted to 
empty or, if the cosmological constant is present, Einstein 
spaces. In the dynamical case, one would be led to require 
only that the velocity 4-vector of the rigid body be the 
timclike eigenvector of the Einstein or stress-energy ten- 
sor. This condition would ensure the vanishing of the 
local, proper momentuin-density vector (denoted t in 
dyadic notation) inside the rigid body; it is also, of course, 
satisfied a fortiori in Einstein space, with or without cos- 
mological constant. 

Some of the questions which may 1)t. posed for study 

(1) Does either the test or dynamical rigid body have 
more than the three degrees of freedom permitted 
in flat space-time? 

arc: 

(2) Is the time behavior of acceleration and angular 
velocity vectors restricted, and if so, how? 

(3) Will an arbitrarily given Einstein space admit any 
test rigid body motion? 

(4) Will such a space (empty, but perhaps with cos- 
mological constant) admit rotating rigid motions 
other than isometries; i.e., does the Herglotz- 
Noether theorem still apply? 

In 1959, C. B. Rayner (Ref. 7) showed that the proper 
energy density and the magnitude of the angular velocity 
of a rigid body must be constant in time. Recently, 
Pirani and Williams (Ref. 8) have included this in a set 
of six relations between the time behavior of the angular 
velocity vector of the body and certain components of 
the space-time curvature; these relations follow from the 
time constancy of the orthogonal metric of the rigid body. 
R. H. Boyer (Ref. 9) has carefully discussed the entire 
problem and has extended this work to obtain sufficient, 
but not necessary, conditions for the validity of the 
Herglotz-Noether theorem in curved manifolds. 

In this report, the equations of test rigid motion in 
Einstein space are systematically discussed. We use the 
dyadic notation and formalism for general relativity pre- 
sented in Ref. 10. Indeed a collateral purpose of this 
report is to supplement the previous discus3ion at several 
important points, and then, above all, to demonstrate how 
the rather elegant and straightforward manipulations 
allowed by the dyadic equations can lead to useful results 
which otherwise, in covariant terminology, appear to be 
of impenetrable complexity. 

I 

I 

In Section 11, we introduce first the use of intrinsically 
determined reference vector frames, a device allowed by 
the dyadic formalism, which can be as important and 
convenient as the use of intrinsic coordinates. The use of 
co-moving intrinsic coordinates is discussed, as well as 
the various operations of differentiation. Finally, the basic 
dyadic equations are presented for test rigid frames in 
Einstein space. 

In Section 111, partly as an illustration of dyadic 
techniques, we prove the Hcqlotz-Noether theorem in 
space-time of uniform curvature (de Sitter space), a 
proof already far from trivial in covariant language. We 
derive, in this space, the general quotient-space (three- 
dimensional, or inner) metrics of rotating and accelerating 
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test rigid bodies, and briefly discuss the nonrotating (or 
normal) rigid motions (those which allow three degrees 
of freedom). 

In Section IV, we prove a theorem stated by Boyer 
(Ref. 9) that geodesic test rigid frames are impossible 
in Einstein space (other than flat). In Section V, we show 
that nonrotating, nonisometric rigid motions can only 
occur in a restricted class of Type D Einstein spaces, and 
that such motions are allowed but one degree of freedom. 
The metrics and the rigid frames are exhibited. These are 
the only rigid motions that have any degree of freedom 
whatever in Einstein spaces which are neither flat nor 
uniformly curved. 

In Section VI, we explicitly attack the Herglotz- 
Noether theorem in Einstein space. The six time- 
derivative equations of Pirani and Williams (Ref. 8) are 
shown to be included in a full set of 14, which may be, in 
principle, solved for the local time rate of change of the 
14 dyadic components involved, subject to a set of sub- 
sidiary algebraic conditions. A rigid frame can rotate only 
in the unlikely event that the subsidiary conditions are 
all fulfilled throughout the motion; the equations then 
determine the complete evolution of the motion and the 
metric from any initial 3-space. It remains to show that 
the subsidiary conditions can be satisfied only by isom- 
etries, if the Herglotz-Noether theorem is to be stated for 
general Einstein spaces in the usual simple fashion. 

II. DYADIC FORMALISM AND EQUATIONS 

A. Intrinsic Reference Systems 

The dyadic formalism results from the introduction of 
an orthonormal tetrad of basis vectors, one timelike and 
three spacelike, at each event in space-time. The ortho- 
normality relations may be written 

The timelike tetrad vector uo is everywhere aligned with 
a given timelike congruence and so coincides with the 
unit tangent to the congruence. If the world lines of the 
congruence represent the history of a material medium, 
uo will be the 4velocity field of the matter. The spacelike 

triad ua [or u, v, w] then provides a locally co-moving 
frame of reference, and spans the local 3-space orthogonal 
to the given congruence at each event. A formal partition- 
ing of the space-time manifold is thus achieved and by 
projecting all tensor fields of interest into these orthogonal 
3-spaces, we arrive at the three-dimensional vector and 
dyadic formalism. Some features of the dyadic notation 
are reviewed in Appendix A. The development of the 
general dyadic equations describing an arbitrary time- 
like congruence is sketched in Appendix B. A complete 
discussion of this approach is contained in Ref. 10. 

In general, the local orthogonal 3-spaces at different 
events will not mesh together to form a family of im- 
mersed three-dimensional sub-spaces in the space-time 
manifold, nor is it generally the case that they are so 
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related as to determine a metric on the quotient %space 
defined by the congruence. Further, the relation between 
the spacelike triads at different points is arbitrary, though 
assumed continuous, so that the tetrad field is, in general, 
anholonomic or nonintegrable. That is to say, the orthog- 
onal basis vectors underlying the dyadic formulation are 
not necessarily related to any holonomic coordinate sys- 
tem in either three or four dimensions, nor derivable 
from scalars by differentiation. 

The freedom within the dyadic formalism to use an- 
holonomic reference vectors is often very convenient. It 
permits us to choose reference vectors intrinsically at 
each point of the manifold in such a way that the alge- 
braic structure of the pertinent quantities and equations 
is as simple as possible. Typically, we might select an 
orthonormal triad formed from the acceleration and 
angular velocity vectors of the timelike congruence; 
again, the three eigenvectors of a field dyadic might be 
convenient. Reference vectors so chosen, however, may 
well be anholonomic. Ultimately, the comparison of con- 
ditions at different points of the manifold requires the 
introduction of a coordinate system and investigation of 
differential properties. The point is that such questions 
are easily deferred and studied as a completely separate 
issue after the algebraic characteristics of the problem 
are settled. 

It is frequently the case that a given problem further 
provides its own intrinsic coordinates, as well as intrinsic 
reference vectors. This is a familiar situation in general 
relativity where the general covariance of the equations 
permits the election of almost any scalar variable to serve 
as a coordinate, at least over a limited region. As often 
suggested, the scalar invariants of the curvature tensor 
itself may be adopted. The dyadic formalism is most 
appropriate when a physically or geometrically distin- 
guished timelike congruence exists in the space-time 
manifold, and this additional structure usually generates 
further scalar magnitudes from which intrinsic coordi- 
nates may be selected. The most convenient intrinsic 
coordinates arise from this last class, and are the co- 
moving coordinates next discussed. When a coordinate 
system is finally adopted, the so-called natural system of 
reference vectors belonging to it may be introduced. In 
contrast to the original orthonormal tetrads, these new 
vectors will be derived from the coordinates by differ- 
entiation, and are consequently a holonomic intrinsic 
reference system. In the following two sub-sections, the 
relations between these different basis systems are 
developed. 

0. Co-Moving or Adapted Coordinates 

The most useful coordinate systems for our purposes 
are the adapted or c o - m i n g  coordinates. These are spec- 
ified by taking the given timelike congruence curves to 
be the coordinate lines: t varies, X" constant (a = 1, 2,3). 
Each world line of the congruence is thus the intersection 
of three 3-spaces given by a particular set of constant 
values for the 9. Using the dot notation for the derivative 
with respect to proper time along the congruence, we 
clearly have 3ta = 0; in effect, the adapted coordinates X" 

label the world lines. At each point, a natural holonomic 
triad of basis vectors ea is defined relative to a particular 
co-moving coordinate system by the normals to the three 
hypersurfaces, xa = constant, passing through that point. 
Note that, by the definition of co-moving coordinates, 
these normal vectors will be everywhere orthogonal to 
the timelike congruence (which lies in the hypersurfaces 
f l  = constant), and so span the same local orthogonal 
3-space as the orthonormal triad u". Using the normal 
gradient vector, we may define 

where the V operator always denotes three-dimensional 
covariant differentiation orthogonal to the timelike con- 
gruence. Note that the index a on boldface symbols such 
as ea labels vectors, not components of a vector. A further 
dual set of natural vectors en may be derived from e" by 
the inversion 

As is familiar, these dual vectors will lie along the inter- 
sections of the coordinate surfaces. The dual of the ortho- 
normal triad coincides with itself: uu = u.. 

An arbitrary vector, say V ,  orthogonal to the timelike 
congruence now has three possible expansions. Using the 
summation convention for repeated indices (from 1 to 3, 
for either Greek or Latin indices from the first parts of 
their respective alphabets), we can write 

where VL = V,L are the orthonormal components, while 
V" are contravariant, and V ,  covariant, natural compo- 
nents. The dyadic I defined by 

(5) I = u' u, = e" e, = ecr e" 

4 
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serves as the unit operator; 

Vel = I-v = v. 

ence (for rotating matter this will not even be possible), 
so that the normal to these surfaces will have projections 
both along, and orthogonal to, the congruence. Thus, 
we write 

(6) 

We may also expand these sets of basis vectors on each 
other so that e" = (el' uf1) u" + (eo ua) ua, (13) 

and it is convenient to introduce the special symbols ea = ,,AauuU, 

ea = "Xaua, 

u" = u, = "A, e" -z .Aa e,, 
(14) 4 3 en ull, A = (e" u,) ua, 

so that 

thus defining the connecting quantities, or transformation 
matrices, .ha, "A,. These will satisfy the equations eo = +uo + A. (15) 

The quantity 4 is a scalar, while A is a vector in the 
orthogonal 3-space; they represent the absolute rate of .Aauhp = 8; , "A" b X a  = a:, (8) 
change of the t-coordinate, respectively along, and 

be defined by 

which result from Eqs* (l) and (3). The a'" are orthogonal to, the timelike congruence, and could as well 
simply the ordinary coordinate tensor notation for the 
triad vectors u,. The dyadic formalism was developed in 
this language in Ref. 10 and is also employed in &pen- 
dix B of this report. 

The dual sets of natural vectors are useful for expres- 
sing the metric of the local orthogonal 3-space in terms of 
an adapted coordinate system. Taking various natural 
components of the unit dyadic, we have 

and define 

Thus, for instance, a displacement vector dx, orthogonal 
to the timelike congruence, will have the natural ex- 
pansion 

where T is proper time on the timelike congruence. The 
quantities 9 and A serve in the dyadic formulation as 
potentials for the inertial field described by the accelera- 
tion a and angular velocity C! of the timelike congruence. 
[By grace of the principle of equivalence, the local field, 
determined by the orthonormal reference system and 
"absolutely" measurable with accelerometers and gyro- 
scopes gimbailed in that system (the feld -a  and -Q), 
is often called the gravitational field. The formal analogy 
of test particle behavior with that of charges in an elec- 
tromagnetic field E and B is indeed close. But it is 
clear that better terminology is to denote a and Q as 
the inertial field, reserving t'he gravatation epithet for the 
small perturbations of the inertial field expressed by the 
ten components of the Weyl dyadics A and B (Ref. lo).] 
As verified in Appendix B, the potential equations take 
the form 

(17) 
dx = (dx ea) e, = dx" eo, (11) +a = - v + + A + S * * A  

and the norm 

dx? = dx dx = e, eo d p  dxs = hag d e  dxs. (12) 

and 

2 + Q = V x A ,  

Finally, we introduce at each event the natural vector closely analogous to the potential equations of electro- 
eo, normal to the coordinate surface t = constant through magnetism. The existence of such potentials is guaranteed 
that event, and write its expansion in the orthonormal by the possibility of using co-moving coordinates, and 
tetrad. There is no requirement that the t-coordinate sur- through their identification with derivatives of the 
faces be everywhere orthogonal to the timelike congru- t-coordinate as in Eq. (16). 

5 
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These potentials are not unique; "gauge transformations" 
are allowed similar to those of electromagnetism, and it 
is easily verified with the use of the commutation rela- 
tions [Eqs. (B-20) and (B-21) of Appendix B] that the 
new potentials 

;=++$, A = A + V + ,  (19) 

with $ an arbitrary scalar function, reproduce Eqs. (17) 
and (18). Recalling the definitions of the original Q, and 
A in Eq. (16), it is clear that we are simply introducing a 
new timc coordinate, F= t + +, where 

- -  - - 
4 = t ,  A = V t .  (20) 

The special case, t = f (t) with f (t) an arbitrary function, 
is often useful since the potentials are transformed only 
b y  a factor, 

If we are dealing with an irrotational congruence (9 = 0), 
it will be simplest to use a "Coulomb" gauge such that 
A = 0. The transformation of Eq. (21) then permits multi- 
plication of Q, by an arbitrary function of time without 
destroying this condition on A. 

Using Eq. (15), thc contravariant components of the 
four-dimensional space-time metric can be expressed as 

c,~~u = eu A2 - $2 gll" = ea A .  = A", 
b , 

( 2 2 )  
gat3 = eQ.eP = hop.  

The inversion, g,, g"' = a;, , determines the covariant com- 
ponents to be 

leading to thc cxprc.ssion of the space-time interval in 
co-moving coordinates: 

tis' 7 - 1 2 
- tlt' + - A, dx" dt 

Q,2 #J2 

d~"dx"?. (24) 

Co-moving coordinates have of course been discussed 
previously in non<lyadic form by many authors (Ref. 11). 

C. Differentiation of Scalars, Vectors, and Dyadics 

The various operations of differentiation in the 3-space 
orthogonal to a timelike congruence were introduced and 
fully discussed in Ref. 10. The purpose here is primarily 
to relate these operations to, and express them in terms 
of, partial derivatives with respect to a system of CO- 

moving coordinates. 

Let +(t,x") be an arbitrary scalar function of such 
coordinates. For the proper time derivative, we have 

(25) 

where the last equality results from XN = 0 and + = t. For 
the gradient of + orthogonal to the congruence, we have 

v + = - v x x " + -  a+ a+ V t  
ax" at 

a+ 1c =-e"+-- ,  
ax. #J 

where we have used Eq. (25) and the relations eR = Vx" 
and A = Vt. This may be rewritten as 

and the second equality serves to define the three- 
dimensional comma derivative notation. (In general, it is 
not simply a partial derivative.) Dotting this equation 
with the dual vector eg gives then 

which clearly represents the change of $ orthogonal to 
the timelike congruence in the (xo, t )  2-surface. $,, is the 
intrinsic derivative of + in the direction of e,. It is 
quickly verified that, for the special cases, + = x" or 
+ = t, Eq. (28) reproduces previous relations. The 
orthonormal components of the gradient, denoted by 
V,, +, become 

giving the change of + along the spacclike congruence 
having ufl as unit tangent. Finally, for the total differential 
over a displacement dx in the orthogonal 3-space, we have 

6 
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Time differentiation of vectors is defined in terms of 
the dot derivative such that for an arbitrary vector, V, 

v = (V*U")*UQ = Vaua; (31) 

that is, it signifies the derivative with respect to proper 
time of the orthonormal components of V in any given 
triad system. It follows from this definition that i, = 0 
always. (In Ref. 10, this definition of dot differentiation 
occurred naturally by first differentiating intrinsically in 
the timelike uo direction, and then "strangling" with the 
triad vectors.) The absolute derivative of the orthonormal 
triad vectors along the timelike congruence will be 
written 

(32) 
6 U" 

6 T  
- = - (a*ua)uo  + o x ua, 

where a = Suo/ST is the acceleration of the timelike con- 
gruence, and o is defined by this equation to agree with 
Ref. 10 and Eq. (B-6). The first term on the right gen- 
erates Fenni-Walker transport, while o describes any 
rotation of the triad relative to Fermi axes. As shown in 
Ref. 10, the triads may be introduced having any 0 what- 
ever. The absolute derivative of V can now be obtained, 
using its expansion, as 

We note that the quantity V + o x V transforms vec- 
torially under a change of basis vectors ua although its 
separate ierms may mji, and that its v~nishi~?g i: Z E ~  

triad system is the necessary and sufficient condition for 
Fermi transport of V. 

It is verified in Appendix B that the time derivatives 
of the natural basis vectors ea and ea, associated with a 
co-moving coordinate system, are given by 

where S and 9 are the rate-of-strain dyadic and angular 
velocity vector of the timelike congruence. One result of 
these equations is 

relating the time dependence of the orthogonal metric 
to 5. Also, putting V = e" in Eq. (33), we find for the 
absolute derivative 

(S - 9 x I) e". (36) - aauO - 6 ea 
67 

-= 

Dot differentiation of dyadics is similarly defined in 
terms of the variation of their orthonormal components. 
It follows that the absolute derivative of a dyadic M is 
given by 

- - a * M u 0 - M * a u o  + o X M  - M X o + M .  
SM 
6 T  

-- 

(37) 

Turning to spatial differentiation of vectors we define, 
as in Ref. 10, the intrinsic vector differential operator D 
in terms of the gradients of the orthonormal components 
of a vector V in a given triad basis; 

D V = D ( V , u " )  = D(V, )ua=(VVa)ua .  (38) 

The last equality follows because there is, of course, no 
distinction between D and V when applied to scalars. 
By definition then, Dua=O and D is a non-covariant 
operator involving essentially only comma derivatives, 
since we may write from Eq. (27) 

and so obtain for the orthonormal expansion of the 
quantity DV, 

We shall use the symbol V for the vector operator of 
3-space covariant differentiation so that 

V V  = V (Vaua) = (VVa) ua + V, (Vu") = D V  + Va Vua. 

(41) 

As brought out in Ref. 10, one of the advantages of 
orthonormal reference vectors is the fact that the an- 
holonomic affinity 

is antisymmetric on the last pair of indices rather than 
symmetric on first and last, as with the usual affinity. 
In three-dimensional space it has 9 components, instead 
of the 18 normally required, and so may be represented 

7 
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conveniently by a nonsymmetric dyadic. If we define the 
dyadic N, 

to represent the affinity components, we find by crossing 
ub from the right, using the orthonormality relations, 
Eq. (l), and the identity, (A-8), that 

so that the gradient of each triad vector is expressed by N. 
The affinity components are related to those of N by 

although we shall consistently prefer the dyadic repre- 
sentation. [The use of a dyadic to represent the an- 
holonomic affinity of orthonormal triads is expedient for 
its simplicity and economy of notation. It must be ob- 
served however that, since it is an affinity, N will not 
transform under an arbitrary change of basis vectors 
according to the usual linear, homogeneous law for 
dyadics. The general transformation law for N is derived 
in Ref. 10 and has the familiar inhomogeneous term de- 
pending on derivatives of the transformation matrix, as 
expected for an affinity. These same remarks apply with 
equal force to the use of a vector, o, to represent the 
angular velocity of the triads. Its transformation proper- 
ties are also obtained in Ref. 10, and it is shown that any 
values for the o field, including zero, may be obtained 
simply by an appropriate choice of triads. In practice, we 
almost always adopt a particular intrinsically defined set 
of basis triads and stick then to sets related to these by a 
carefully delimited process of "Sspace rotation" under 
which N and w transform linearly and homogeneously. 
The situation is perfectly analogous to the use of tensor- 
like notation for the usual affinity whose transforma- 
tion law is nontensorial and seldom directly used.] 

We also point out a notational change from Ref. 10 
where the dyadic affinity was denoted by N*, and the 
bare symbol N represented only its symmetric part (up 
to a trace). This notation has proved slightly clumsy, 
since we deal almost exclusively with the unsymmetrized 
object. Accordingly, in this report, N replaces the N* 
of Ref. 10. If and when a symbol is required for its 
symmetric part, we shall use N" = W(N f NT) as in 
Appendix A. 

The explanation of the smaller number of independent 
components of the affinity is now seen from the fact that 
only the 9 components in the curls of the three ortho- 
normal basis vectors are actually involved. From the 
identity 

and using Eq. (A-19), we can obtain the relation 

1 
N =  -ua(V x u a ) + - [ u a * ( V  2 x u a ) ] l ,  (46) 

expressing N in terms of the curls alone. Writing the 
antisymmetric part of N as a vector n (Appendix A), 

we find several equivalent expressions for n, 

1 u5 x (V x u") = - 1 Ua Vu" = - - 1 (V 'U") ua. 
2 

n =  -- 
2 2 

(48) 

According to the last equality, each triad component of 
n thus represents the covariant divergence of that same 
triad vector. In Ref. 10, n was denoted L. 

Returning to Eq. (41), we may now write the covariant 
derivative of V in terms of N as 

V V = D V  - V,N X U" = DV - N X V. (49) 

The generalization to covariant differentiation of dyadics 
is immediate. Using the identity (A-19), we have for an 
arbitrary dyadic M 

where the double cross notation is defined in Appendix A. 

D. The Dyadic Equations for Rigid Reference 
frames in Finstein Space 

A general timelike congruence may be described at 
each point by its absolute acceleration vector a, angular 
velocity vector R, and symmetric rate-of-strain dyadic 
S. The precise definitions of these quantities and the 
general dyadic equations they satisfy are given in 
Appendix B. Here, we write the equations specialized to 
rigid congruences in Einstein spaces. The notation is de- 
fined in Appendix A. 

8 
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Following Born, the rigid congruence is defined by S = 0, 
so that all rates of shear and expansion vanish. In space- 
time, this is equivalent to constraining the world lines 
of the timelike congruence to have constant orthogonal 
separations. The geometrical consequence of this con- 
straint is revealed by Eq. (36); the orthogonal 3-space 
metric on a rigid body in co-moving coordinates is con- 
stant throughout time, (hob)' = 0. By adopting ortho- 
normal basis triads which co-rotate with the rigid body 
(0 = Q) and are thus fixed in it, we have in Appendix B 
the dyadic S* = 0 and, from Eq. (B-16), we see that the 
anholonomic affinity is time independent: N = 0. In this 
situation it is permissible to replace the many local 
orthogonal 3-spaces with the concept of a single metric 
quotient space: the three-dimensional manifold of co- 
moving coordinates xa. Geometrically, we may picture 
the quotient space as a reduction of space-time obtained 
when all events lying on each world line of the timelike 
congruence are identified. The orthogonal metric hob and 
the affinity N are then applied to this quotient space. 

Eq. (B-17) becomes the curvature equation for a three- 

1 
2 

dimensional metric space: 

(51) v X N = - - N T ; N + E .  

The symmetric dyadic E is the conservative dyadic of the 
quotient space, satisfying the Bianchi identity 

V*E = O .  (52) 

Its diagonal elements are the Riemannian curvatures of 
the quotient space, based on the orthonormal triad 
vectors, while all six components are sufficient to express 

being exhibited in Eq. (€3-19). Since N = 0, we can apply 
the commutation relation equation (54) to (51) to show 
that 

+ha bv...y.c.sc. nnmnloto 'Z spzce curvzt.dre tenser, the mart relation 

E = O ,  (53) 

independently of the coordinate system employed. In 
co-moving coordinates this is, of course, seen as a trivial 
consequence of (hob)* = 0. 

The commutation rules for covariant and time differ- 
entiation in the quotient space are somewhat unfamiliar, 
in general, as a result of the use of anholonomic reference 
systems. And although the geometry of the quotient space 
is constant in time, we may have time-dependent objects 
in the space; for these the order of space and time 

differentiation is of consequence. Letting q, V, and M 
symbolize an arbitrary scalar, vector, and dyadic, we have 

(54) 

Note that for any time-independent quantity, these 
operations do commute; this is a special property of 
rigid congruences. 

Commutation of the covariant operator V with itself 
is also somewhat unusual, except when the angular 
velocity 9 of the rigid body vanishes. (In this latter case 
the 4-velocity of the body is derivable from a scalar 
potential and its world lines are the orthogonal trajector- 
ies of a family of hypersurfaces in space-time. Conse- 
quently, the quotient space becomes isomorphic to all 
the members of a family of immersed Riemannian 3- 
spaces, which could be parameterized by t.) Samples of 
the space-space commutation relations are 

v x v* = 2$Q, 

V*(V x V) = 2 9 4 7 ,  
V X (VV) = - E  x V + 2 9 V .  

Next we iiiipose the condition for Einstein space in the 
form 

where A = -%R is the cosmological constant. In ortho- 
normal components this equation leads to the following 
expressions for the curvature quantities of Eq. (B-12): 

(57) 

t = O ,  (58) 

1 
T = - A I ,  2 

1 
p = 2 A .  (59) 

There are 10 of the 20 curvature components specified by 
these equations. The remaining 10 are represented in the 
two symmetric, traceless dyadics A and B, which are 

9 
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arbitrary. We note that since t = 0, we have B* = B** 
= B and, using the relations in Eq. (B-13), we find 

1 
3 P = Q = A - - A I ,  T r P = T r Q =  - A .  (60) 

The curvature of the quotient space is related to the 
space-time curvature by a generalized Gauss equation, 
which from Eq. (B-18) becomes 

This equation, together with Eq. (53), has important 
consequences for allowed rigid motions, which will be 
discussed fully in later sections. 

As a vector field in the quotient space,the acceleration 
of the rigid body satisfies [from Eq. (B-14)] the dyadic 
equation 

The trace of this equation reads 

and its antisymmetric part is 

This last equation is, in effect, the integrability condition 
for the potential cquation for a [Eq. (17)], which here 
simplifies to 

+a = - V +  + A .  (65) 

The corresponding set of equations (B-15) for the 
angular velocity or vorticity field becomes 

V P  = -2aP + ( a * P ) I +  B ,  (66) 

V . P =  a - P ,  (67) 

with the potential equation 

The gravitational field equations, or Bianchi identities 
[Eqs. (B-26) to (B-28)] have Maxwellian-like forms, but 
are, of course, dyadic equations : 

The antisymmetric parts of these two equations are the 
vector equations: 

Finally, since we have specialized to Einstein space, the 
contracted Bianchi identities are trivial. They merely 
insist on the constancy of the cosmological constant; 

1 0  
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111. RIGID MOTION IN SPACE-TIMES OF CONSTANT CURVATURE 

The problem of rigid motions in flat space-time was 
thoroughly treated by G. Herglotz (Ref. 2) and F. Noether 
(Ref. 3), and the generalization to constant curvature 
manifolds introduces virtually nothing new. For com- 
pleteness, we simply summarize the results of these and 
a few subsequent authors on this problem, expressing 
them in the dyadic notation. The only original contribu- 
tion here is a derivation of the quotient space metrics 
intrinsic to a rotating and accelerating rigid body in the 
space-time of constant curvature. 

Setting the conformal curvature dyadics A and B to 
zero, we obtain the equations appropriate to a space-time 
of constant curvature, K = 4511. Combining Eqs. (53) and 
(61), we see that 

si2 + i223 = 0 ,  

and since the trace of this equation gives 2Q h = (0')' 
= 0, we find by dotting Q through that 

Q = O .  (75) 

Since the equations are written in body-fixed axes, this 
result shows immediately that the angu1.ar velocity is a 
fixed vector in the body; however, since Q + o x 9 also 
vanishes (o = Q), we find that the angular velocity vector 
is fixed ir, Fermi propagated axes as well [Eq. (33)]. We 
note also for later use that Eq. (64) now reads simply, 
v X a = 0 .  

Using the fact that space and time derivatives of Q 
will commute, it foiiows from time ciifferentiatiiig Eq. (6'7) 
that (a.23). = 0. Then treating Eq. (66) similarly, one 
gets the dyadic equation 

i Q = O .  (76) 

Thus, if the angular velocity does not vanish, we must 
have a = 0 so that the acceleration vector is body-fixed 
also. The two equations now satisfied by a when R #O, 
(i.e., V x a = i = 0), together with the constraint of 
rigidity S = 0, are the necessary and sufficient conditions 
for an isometric or Killing vector congruence. Thus, the 
Herglotz-Noether theorem applies to all space-times of 
constant curvature. The full 10-parameter set of isometries 
exists for these spaces and is well known; Herglotz 
(Ref. 2), in particular, has given a detailed treatment of 
the timelike isometries in flat space-time. 

The curvature of the spatial geometry in a rotating 
rigid body depends on the angular velocity, as shown 
by the Gauss equation (61) for the 3-space curvature 
dyadic E, 

1 
E = -32223 + - 3 A I .  

The scalar curvature of the space is given by -2 Tr E and 
so has the value -2 (A - 3R2) .  The metric of the quotient 
3-space on a rotating rigid disk has been a subject of 
occasional interest in the literature of relativity; several 
references to early literature are given in the discussion 
by Berenda (Ref. 12). In constant curvature space-time, 
the most general rotating and accelerating rigid body is 
a typical example of a situation providing its own in- 
trinsic co-moving coordinates, and the quotient metrics 
are easily obtained with this approach. 

For the rotating body, three intrinsic scalars may exist: 
az, a', and a*Q,  all of which must be time independent 
as we have shown, so that co-moving coordinates may be 
constructed from them. The gradients of these scalars 
are obtained directly from Eqs. (62) and (66) as 

Vu2= 2 ( v a ) * a =  -2 az + R2 i 
+ 2(a*22)Q, 

V O X  = - 4 ( n 2 ) a + 2 ( a * Q ) Q ,  

V(a*Q)  = ( v a ) * Q  + ( v Q ) * a  

1 
3 = -2 (a*Q)a- -AQ,  

and these equations can be combined to express the ac- 
celeration vector as a gradient in two ways; 

The last equality results in the integral 

1 
3 (a Q)2 4- - AR2 = k' 

11 
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revealing that the three scalars are not independent, so 
that only two intrinsic coordinates can actually be con- 
structed. Since space-times of negative constant curva- 
ture have very peculiar physical properties, we shall here 
consider A S 0  only. By the form of Eq. (78), the inte- 
gration constant is then required to be positive, so is 
written k', and we take k A 0. 

From Eq. (68), we note that Q * ( V  x Q) = 0. This is 
the integrability condition allowing R to be derived from 
a scalar potential. Reworking the previous gradient equa- 
tions to solve for 9, we can find the explicit expression 

R' ] (79) 
0 2  

R =  2 ( a * Q )  In [ (a? - Q2 $- ?,$A)? * 

If we define the vector al as the component of the ac- 
celeration perpendicular to the angular velocity 

we find from Eqs. (77) and (79) that 

It is now clear that two especially convenient intrinsic 
coordinates are obtained by taking one of them to be 
some function of the argument of the logarithm in 
Eq. (79), and the other a function of the argument in 
Eq. (81). For, as shown by Eqs. (79) and (81), the 
gradient vectors of such coordinates will be orthogonal, 
leading to an orthogonal metric. We select the functions 
by keeping in mind the flat space-time example of the 
rigid disk rotating about a fixed axis, and requiring the 
general metric to reduce in that limit to a familiar form 
in cylindrical co-moving coordinates. 

This is accomplished for the argument in Eq. (79) by 
setting 

where CY = (%A)',$, a)o is a new constant, and z is introduced 
as the coordinate whose surfaces have R as normal vector. 
In flat space-time ( A  = CY = O ) ,  this reduces to 

But in addition for the fixed axis disk a Q = 0 every- 
where, which from Eq. (78) requires k = 0, so that 

(a. - Q2 )? - 2 
- 6 J o ,  R = ~ = O  R2 

On the axis of the disk a? = 0, and so for this special case 
it),l is identified as the angular velocity on the axis. 

The coordinate T is introduced by putting 

where ,8- (1 + 4k2)%, and aL is thus orthogonal to the 
coordinate surfaces T = constant. In the rigid disk limit, 
this becomes 

n = k = O ,  

and the axis, (I' = 0, is properly located at r = 0. Now 
solving simultaneously Eqs. (78), (82), and (83), we ex- 
press the intrinsic scalars for the general case in terms 
of these intrinsic coordinates; 

where 

R - 1 + /3 COS (2kwo~) ,  

z- CY($ - z ) .  

By differentiating Eqs. (82) and (83), substituting in 
Eqs. (79) and (81), and using the expressions in Eq. (84), 
we find 

R =  v z  (85) 

showing Vz as a unit vector, and 

12 
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A third intrinsic coordinate does not exist; however, 
applying the dyadic equations [(62) and (SS)] for Va and 
v9, we easily prove that 

(a x 9) [ v  x (a x Q)] = 0, 

so that a scalar potential also exists for this vector which 
is orthogonal to both 9 and ai. Let the potential be 
denoted by Band write 

x sin z t ( r ,  z )  v e. 
Here [ ( r ,  e, z )  is an arbitrary scale factor. The rest of the 
coefficient of V e  is written separately for the following 
reason: if we calculate the curl of both sides of this 
equation, we find that 

vtx ve=o,  

implying that vt is collinear with V e  so that t must be 
a function of S only. Consequently, we may introduce a 
new potential 0 defined by 

and have 

X sinZV0, (87) 

where 0 is now adopted for the third orthogonal co- 
ordinate. 

The gradients of the coordinates constitute the natural 
basis vector triad ea, as defined in Section 11-B, and 
putting 

e' = VT, e2 = VO, 

we use Eqs. (a), (86), and (87) 
set as 

e3 = Vx, 

to determine the dual 

satisfying the inversion ea e6 = 8;. Using ho,a = ea eo 
the general quotient space metric for a rotating, accel- 
erating, rigid body in constant curvature space-time 
becomes 

Limits are required on the ranges of both z and T co- 
ordinates; first for z 

(89) 

since not only is the metric singular at these limits, but 
from Eq. (84) all the intrinsic scalars approach infinity 
here. The limits on the T coordinate result from two con- 
siderations: the sine function in the coefficient of de2 
requires 

0 1 2 k w 0 r  4 x , 

but this range is subdivided by the vanishing of the 
quantity R in the denominator at cos (2kw0r) = 6-'. Since 
the intrinsic scalars become infinite at this point, it is 
best to give two different metrics for each range. 

The first becomes 

dlz = (%)' sin2Z { dr' + (5)' 
sinZ (2koOr) 

2 [ p  cos (Wo0T) - 11 X 

By letting a+ 0, we find for flat space-time 

+ dz2, A = 0. 

(91) 

sin2 (2koor) 
2 [ p  cos ( 2 L 0 r )  - 11 

And if we further let k vanish so that a 9 = 0, we get 

9 

e:' = 191 ' 
T' 

1 - o;rz d12 = dr' + do2 + dz2, A = k = 0, (92) 
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which is the quotient metric on a fixed-axis rotating rigid 
disk in the form obtained by Berenda (Ref. 12). Compare 
also the discussion by Mgller (Ref. 13). In Eq. (92), the 
r coordinate ranges over the finite interval 0 L r 4 (0J-l; 

it is easily seen from Eq. (84) specialized to this case that 
both a: and n2 increase without limit as T+ (W,)-l, which 
thus corresponds to the greatest possible extent of the 
disk, the boundary moving at light velocity. 

In order to write the metric for the second allowed 
range, it is desirable to introduce a new coordinate f 
according to 

so that 

dP = (%)’ sin2Z { d? + (--) P ’  

The limiting case A = k = 0 is of little interest here, since 
it can be shown from Eq. (84) that it corresponds to van- 
ishing angular velocity in ff at space-time, and conse- 
quently a flat quotient space results. This completes our 
discussion of rotating and accelerating rigid frames in 
space-times of constant curvature, that is to say, of the 
isometries of these spaces and the geometry of their 
quotient spaces. 

The irrotational rigid motions are physically more in- 
teresting in these spaces, as at least some degrees of free- 
dom are present. Actually, however, there is not much 
need for analytical investigation of these motions, since 
a simple geometrical construction for them exists and 
elucidates their features better than a set of equations 
could. For flat space-time, this construction was men- 
tioned by Herglotz (Ref. 2) and analyzed in detail by 
Fokker (Ref. 14); a good discussion of the general case 
is found in Ref. 9. 

When SL = 0, the unit tangent vector to any timelike 
congruence is derivable from a scalar potential. The 

world lines of the irrotational rigid congruence are con- 
sequently the orthogonal trajectories of a family of three- 
dimensional hypersurfaces in space-time. The rigidity of 
the congruence ensures that all these hypersurfaces, any 
of which may be identified with the quotient space, will 
have identical metric properties; the congruence can 
indeed be viewed simply as an isometric mapping of each 
hypersurface on all the others. It is further easily shown 
that the hypersurfaces must be totally geodesic. A simple 
example of this last property is found in flat space-time, 
where the Gauss equation (61) shows that E = 0, SO that 
the quotient space and all the hypersurfaces must also 
be flat. 

In flat space-time, two closely successive spacelike 
hypersurfaces O:, clearly intersect in a spacelike 2-flat e*; 
a third successive hypersurface cuts this in a spacelike 
straight line e,; a fourth determines a point e,. The locus 
(spacelike) of all such points Po in the space-time is the 
so-called edge-of-regression 0 of the congruence. The 
tangents, osculating planes and osculating 3-flats to e are 
the (dl’s, e,’s, and P3’s, respectively. Each rigid normal 
congruence determines a e, and conversely. The three 
degrees of freedom of nonrotating rigid frames in flat 
space-time could explicitly be displayed in a parametric 
set of equations for P. 

Since each point ( ( I ( ,  may be mapped into one given 
hypersurface, the line ((1 also exists as a locus in the 
quotient space. The P1’s and Os’s also may be mapped 
there, their envelope being the boundary of the body, in 
the sense that no point of the body inside it ever has 
infinite acceleration. The edge-of-regression P lies in the 
boundary. 

As mentioned by Boyer, this same construction goes 
through when the space-time is of constant curvature, as 
the subspaces el:+, c12, (nl are again each in turn totally 
geodesic. In Section V, when general Einstein space is 
considered, we will see that the present three degrees of 
freedom for irrotational motion are reduced to one, and 
that even this freedom only occurs in metrics which allow 
the rigid congruence lines to lie in uniformly curved 
timelike 2-spaces. The edge of regression P becomes then 
rather a 3-surface cutting across all these 2-spaces, and 
every congruence line has infinite acceleration at some 
point. 
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IV. GEODESIC RIGID FRAMES 

Since both a = 0 and V x a = 0 are trivially true when 
a = 0, it is clear that geodesic rigid congruences are a sub- 
class of isometric motions, so that inclusion of this section 
violates our intention not to discuss isometries in detail. 
Actually, the only reason for considering these motions is 
to dispose of them, for as mentioned by Boyer (Ref. 9) 
and as we shall show, the geodesic rigid reference frame 
is impossible in any gravitational field outside matter. 
This result is perhaps not too surprising; in fact, when the 
cosmological constant is not present, the proof is very 
quick. It is surprising how relatively complicated the 
proof becomes with inclusion of A. In the presence of 
real matter, of course, geodesic rigid motion is possible. 
The static Einstein universe is the simplest example hav- 
ing no angular velocity, while Godel’s universe is the 
simplest with rotation; both of these models have a con- 
stant matter density and require A # 0, in addition. 

revealing 9 as an eigenvector of B with eigenvalue zero. 
Since Tr B = 0, the other eigenvalues must be equal in 
magnitude but opposite in sign, allowing B to be written 

B = b (W - WW), (99) 

where v and w are the other two orthonormal eigenvec- 
tors. The scalar b may be expressed in terms of the only 
non-zero invariant of B as follows: 

giving 

For the geodesic rigid frame, we put a = 0 throughout 
the equations of Section II-D. From the time-space com- 
mutation relations [Eq. (a)], we see that these operations 
now always commute. The set of acceleration equations 
[Eqs. (62) to (64)] gives 

and so, of course, b = 0. Note that all the eigenvectors 
of B are body-fixed, and they may therefore be adopted 
for an intrinsic orthonormal basis triad. This we now do, 
for the remainder of this section. 

It is convenient to introduce a symbol C for the trace- 
less dyadic R x B. The antisymmetric part of 9 x 6 is 
found using Eqs. {A-Gj a id  (A-13) to be 

(94 

(95) 1 1 ii = 0, 
- - [ (QxB) ; I ]  X I = T [ ( T ~ B ) Q - - Q * B ]  XI,  (102) 

and since this vanishes, C is symmetric. Thus, we put 

2 
(96) 

1 
3 A = - 9Q -t - (az) I, 

and from Eq. (66) 
C = 9 x B = (9 x B)T = - B x 9 (103) 

V S  = B. 

Time differentiating Eqs. (96) and (W), we find A = 8 = 0, 
and all quantities are time independent as expected for 

(104) 9 . C  = C O S 2  = Tr C = 0. 

an isometry. Clearly if A vanishes, 9 = 0, and the vanish- 
ing of the gravitational field dyadics A and B follows, so 
only the case A # 0 needs further investigation. 

Using C and Eqs. (94), (96), and (98), the Bianchi iden- 
tities in Eqs. (70) to (73) of Section II-D may now be 
written 

(105) Dotting 9 from the right on Eq. (97), we have V x A = C ,  V * A = O  

15 
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We complete this set by evaluating V x C. Using the 
identity equation (A-25), Eq. (97), and the above value 
for V x 8, we have 

V x C = - V x (B x Q) = - (V x 8) x Q + B; ( vS) 
A 

= - [ Q R -  2 (n2)I]+2B*B-(B:B)I, (107) 

where, in the last equality, we have also employed the 
expansion equation (A-4) for BZ B. As shown in Eq. (A-28), 
Tr(V x C) = 0 for symmetric C so that, by tracing 
Eq. (107) and using Eq. (94), we find 

or 

Using this result and Eq. (loo), we have 

A v x c = 2 [3QR - (a*) I], v ' C  = 0. (110) 

The following expressions, which are needed below, are 
easily obtained by combining previous equations : 

We are now able to determine the anholonomic affinity 
of the quotient space in terms of intrinsic quantities. 
Applying to Q the general equation (49) for covariant 
differentiation, we have 

which expresses N in intrinsic quantities, except for the 
vector, H = N R. Rewriting, we have 

(116) 
A 
- N  C - HQ, 2 

with the corollaries 

(118) 
A 
-TrN = - H * R .  2 

The components of B in the adopted triad are also con- 
stant, so that D x B = 0. Writing the covariant curl of B 
according to Eq. (50) and substituting for the affinity 
from Eqs. (116) to (118), we have 

- V  A x B = - ( Q * H ) B - C * B  
2 

+ RH*B - C i B  + QHZB. ( 119) 

From Eqs. (106), (lll), and (113), we see that 

A 
- V  x B =  - C * B ,  C z B = O ,  2 

while from the expansion formula (A-4) 

QHZ B = QH* B - (Q*H) B, 

so that, removing a factor of 2, Eq. (119) results in 

Dotting R from the left in this equation gives 

(n2 )H*B = 0 (121) 

We reject the possibility (0.) = -%A = 0, and settle for 
Since R is an eigenvector of B and has constant magni- 
tude, its components in the adopted basis triad are con- 
stant; by definition, therefore, DQ = 0. Crossing Q from 
the right in Eq. (114) and solving for N leads to But Eq. (120) then also requires (Q H) B = 0, and reject- 

ing B = 0 [since it entails also A = 0, by Eq. (log)], we 
take Q * H  = 0, stating that Q and H are orthogonal. 
However, with the structure of B given in Eq. (99), 
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Eq. (122) demands that H be collinear with G!, and we 
are finally forced to accept that 

H = O .  (123) 

We now have N explicitly, 

The coup-de-grhce is accomplished when this value 
for N and the value of E determined from the Gauss 
equation (61), 

are substituted into Eq. (51), which defines E; 

Multiplying through by Y d 2 ,  we obtain 

and using Eqs. (110) and (112), this becomes 

3AZQn = 0 .  (127) 

There is now no escape from the string of consequences 

which reduces this class of motions to uniform translation 
in flat space-time. As a result, in the succeeding sections 
of this report, we may always assume a # 0. 

V. IRROTATIONAL RIGID FRAMES 

As in the flat and constant curvature space-times of 
Section 111, the class of irrotational rigid motions proves 
to be the most interesting even for arbitrary exterior 
gravitational fields. Although we have not quite been 
able to carry through a complete proof of the Herglotz- 
Noether theorem, it will be shown in Section VI that 
the motion of the rotating rigid frame in any exterior 
field is totally determined by initial conditions on a 
spacelike hypersurface. Only among the irrotational 
frames can we find any motions allowing arbitrary func- 
tions of time, or in other words, degrees of freedom. We 
shall concentrate here on finding all such nonisometric 
normal rigid motions which may exist in an arbitrary 

Einstein space. The variety of exterior metrics admitting 
such motions will also be obtained; they turn out to be 
quite special, falling into a well-known class of Einstein 
spaces. 

The equations for these motions are, of course, 
obtained by putting SZ = 0 throughout Section 11-D. We 
note, first of all, that the potential equation (69) for 9 
becomes V x A = 0, and accordingly we may select a 
gauge such that A = 0. This simply corresponds to using 
a time coordinate whose surfaces coincide with the 
normal hypersurfaces of the congruence. Next we find 
that Eq. (66) reduces to B = 0, and the gravitational field 
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is thus described by A alone. Here we insist that A#O, 
since the manifold would otherwise reduce to a space- 
time of constant curvature. This structure of the field 
dyadics can only be obtained in Type I and D Einstein 
spaces in the Petrov-Pirani-Sachs classification scheme, 
as pointed out previously by Pirani and Williams (Ref. 8). 

Turning to the acceleration equations, we expect from 
Eq. (64), which reads V x a = 0, that a will have a 
scalar potential. With the choice of gauge already made, 
Eq. (65) becomes simply 

+ a =  - V + ,  (129) 

so that the potential can be taken as -ln+ The dyadic 
differential equation (62) for a reduces to 

(130) 
1 
3 V a =  - a a + A - - A I ,  

part of the dyadic a x A vanishes, so that we may write 
(Appendix A) 

i X A = - h  x I ,  (135) 

where h is the vector defined by 

1 
2 h = - ( i X A ) ; I .  

Using the identity (A-13) and Tr A = 0, we find 

(137) 
1 .  

h = - a * A .  2 

If we dot i from the left in Eq. (135), however, we get 

h X i = O ,  

so we must be able to write 

and the Bianchi identity for A becomes 

V x A =  - a x  A t  A x  a ,  (131) 

with the antisymmetric part 

Finally, the G:ILISS equation (61) is 

(133) 
1 
3 E = -A + - A I ,  

and since E = 0, we find from this (or from the other 
Bianchi identity) that A = 0 as well. The only intrinsic 
quantities for which time dependence is permissible then 
are the acceleration vector a and its potential +. Since 
we are not presently interested in isometric motions, we 
assume henceforth that i # 0, and attempt to construct 
solutions obeying this constraint. In order to demonstrate 
that the solutions obtained exhaust all possibilities, we 
shall exhibit the construction in some detail. 

First the algebraic properties of the dyadic A will be 
examined. Using the fact that A = 0, we time differentiate 
the Bianchi identity equation (131) and find 

( V X A ) ' = - ~ X A + A X & = O ,  (134) 

where the commutation law equation (54) justifies equat- 
ing this to zero. This equation states that the symmetric 

where the proportionality factor is written as a3 simply 
to avoid fractional exponents later. Combining Eqs. (137) 
and (138), we have 

i - A  = 2a%, (139) 

which exhibits i as an eigenvector of A with eigenvalue 
20". If we now cross i from the left on Eq. (135), we 
obtain with the use of identities (A-8) ana (A-9) 

and substituting from Eqs. (138) and (139), we may solve 
for A as 

It will be convenient to define a unit vector, u = i/ I i 1 ,  
and so to write Eq. (140) as 

It is easily verified that A:A = 6as, and the time deriva- 
tive of this shows ir = 0. Now time differentiating 
Eq. (141) and using the fact that u is a unit vector, we 
find i = 0, so that u is a body-fixed unit vector. So far 
then, we have obtained an explicit form for the field 
dyadic in terms of the time derivative of the acceleration 
vector i; we have determined that this vector is an 

1 8  
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eigenvector of A and that its direction is fixed in the 
rigid frame (only its magnitude can vary with time). 

Clearly, the vector u should be adopted as one of the 
intrinsic triad basis vectors; we now find two more to com- 
plete the triad. Let al be the component of the accelera- 
tion perpendicular to 6,  so that 

al=a - ( a * u ) u .  

We verify that this is a time-independent, body-fixed 
vector by 

61 = i - ( i * U ) U  = p1u - l i l u  = 0 ,  

and so we can use it to define a second intrinsic triad 
vector v by writing 

where 

u z = l ,  u * v = O ,  G = O ,  (a*v)'=O. (143) 

The third triad vector w is defined simply by w = u  x v, 
and, of course, a w = h w = 0. This construction will 
fail if a and i are collinear; but for now we assume this 
is not the case. We shall return to consider the collinear 
case later; it is fairly easily obtained as a limit of the 
mure general sulution. 

Having adopted a basis triad, we proceed to investigate 
its differential properties. From its definition, we may 
write 

The right-hand side of this equation is evaluated by com- 
bining the commutation relation equation (54) and the 
time derivative of Eq. (130). We have 

and from this 

Substituting in Eq. (144), we find 

V ~ = - u [ a - ( a * u ) u ] = - u a ~ = - ( a * v ) u v ,  (145) 

and the corollaries 

v x u = ( V u ) ; I = - ( a - v  w ,  V * u = ( V u ) : I = O .  

(146) 

In like manner, we evaluate Vv = V (aL/lall) by first 
calculating 

VaL = v [a - (a-u)u]  = Va - Va*uu 

- ~ u - a u  - (a*.) Vu, 

and substituting from Eqs. (130), (141), and (145). The 
result is 

and 

Finally, Vw is now easily obtained from 

v w  = v (u x v) = v u  x v - v v  x u ,  

giving 

with 

(149) 

v x w = -  

The geometrical content of these equations may be sum- 
marized by the statements that v is a %space norma:, 
geodesic vector of the quotient space, while u and w are 
2-space normal, Killing vectors of the quotient space. 

We are now prepared to calculate the gradients of all 
the independent intrinsic scalars which can be formed; 
viz., +, a u, a v, and a. All other scalars are algebraic 
functions or derivatives of these. The potential equa- 
tion (129) gives V+ directly, 

V+ = - [ (a*u)u + (a*v)v] .  (151) 

The next two are evaluated as 

V (a*u) = V a - u  + Vu-a  = - (aZ - 2a3 + %A)u 

- (a*u)(a*v)v  (15%) 

1 9  
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and similarly 

v ( a * v )  = - [ (a*v)2  + a3 + %A] v .  (153) 

The gradient of a is most easily derived by substituting 
the explicit form for A given in Eq. (141) into the field 
equation (132). Using the identity (A-18) for chain differ- 
entiation, we have 

V A = V (a3) [ ~ U U  - I] + 3a3 [( V *u) u + U *  VU] = 0 

By rearranging and substituting from Eqs. (145) and 
(146), this becomes 

dv~a - 3a2 (u Va) u + a3 (a v) v = 0 . 

Dotting u through this equation we find u Va = 0, SO 

that finally 

V a =  - a ( a * v ) v .  (154) 

Comparison of Eqs. (153) and (154) now reveals that 
an integral exists; using these equations, it is found that 

(155) 

By integrating and solving for (a-v) ' ,  this may be writ- 
ten as 

where we use an indicator E ( E  = + 1, - 1) to account for 
sign and may restrict the integration constant k so that 
k A 0. We have, of course, Vk = 0, but since all other 
quantities in Eq. (156) have alregdy been shown to be 
time independent, it follows that k = 0 as well. 

It is n,)t quite so obvious that the set of equations (151) 
to (154) leads also to another integral. Using them to- 
gether with the integral equation (156), we may verify, 
however, that 

(a * u ) ~  + E ~ W  ] = o ,  (157) 

and so obtain 

( a ~ u ) ~  + EkW = ~ ' ( k ' ) ~  9' , (158) 

where F' is another sign indicator (e' = +1, -1) and 
k' 0 with Vk' = 0. Here k' might be a function of time; 
since it enters only as a factor of the potentia1 +, such 

time dependence may, however, be absorbed by a special 
gauge transformation [Eq. (21)], as discussed in Sec- 
tion 11. The integral now becomes simply 

We note that this equation forbids the combination: 
E' = -1, E = + 1; all other combinations are in general 
allowed. Adding Eqs. (156) and (159), we obtain the 
square of the acceleration vector 

Physically reasonable spacetimes are usually associated 
with A A 0; for these cases, we see from Eqs. (156) and 
(160) that, if (Y is negative, the only allowed combination 
of signs is E' = E = $1. 

At this point, all the essential intrinsic relations have 
been derived; it remains only to adopt a system of co- 
moving coordinates and obtain the corresponding metrics 
of the quotient space and of space-time. As mentioned 
before, all three of the adopted triad vectors fortunately 
turn out to be 2-space normal. We may, consequently, 
expect to be able to introduce an orthogonal coordinate 
system in the quotient space. 

Two of the intrinsic scalars, (a v) and a, offer them- 
selves as candidates for intrinsic co-moving coordinates, 
since we have verified that they are time independent. 
Actually, since these are related by Eq. (156), only one 
independent intrinsic coordinate is available. Any func- 
tion of a and (a v) might be selected, but a convenient 
choice proves to be - (ka)-'. According to Eq. (154), the 
triad vector v is normal to the 2-spaces a = constant, SO 

we adopt the symbol y for this coordinate and solve for 
the scalars in terms of it: 

(161) 
1 a =  -- 

kY ' 

(a .v)2 =E- - - % A .  (162) yz (ky)" 

By differentiating Eq. (161), we have 

1 
v a = - v y ,  ky' 

SO that Eq. (154) may be transformed to 

e2 = vy = y (a v) v , 

20 
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where we have introduced the natural basis vector e' in 
accordance with the discussion of Section 11-B. 

Intrinsic co-moving potentials for the other triad vec- 
tors are not available; this is connected with the fact that 
u and w were found to be Killing vectors, implying spatial 
symmetry of the problem in these directions. We know, 
however, that the space congruences generated by u and 
w are each body-fixed and 2-space normal, and of course 
orthogonal to each other. Accordingly, we may introduce 
orthogonal, body-fixed (co-moving) coordinates, say Z 
and Z, respectively, by any arbitrary time-independent 
labeling of the 2-surfaces normal to these congruences. 
For the gradient vectors, we may write then 

vx= -[(x;y,Z)u, 1 
Y 

1 

The arbitrary scale factors [ and [ allow for the fact that 
the magnitudes of the gradient vectors on the left are as 
yet unknown, while the factors l/y and l /y  (a v) have 
been written separately for convenience. 

The integrability conditions for these equations are 
simply 

and taking the curls of the right-hand sides, we easily find 
they reduce to 

V[ = (U*V[)U, 

v < =  ( W * - s < ) W .  

But these equations demand that [ ( Z )  be a function of ? 
only, and likewise < (2) a function of ;Z only. It is permis- 
sible then to define a new pair of coordinates, x and Z, by 
the equations 

Introducing the natural basis vectors e' and e3, we now 
have 

The dual natural triad is clearly 

1 
e , = y u ,  e,=- v ,  e3 = y(a*v)w,  (167) 

Y (a * v) 

and the non-zero covariant metric coefficients of the 
quotient space are consequently given by 

h,,  = e, e ,  = y2,  

Since the constant k occurs here only as k-3, we shall 
henceforth write m, where m = k-3 is a positive constant. 
The square of the interval in the quotient space is given 
then in this set of co-moving coordinates by 

(169) 

Note that the metric coefficients are independent of x 
and z; this expresses the symmetry properties we ex- 
pected from the existence of two Killing vectors, u and w. 

To write the space-time metric in the form of Eq. (24) 
of Section 11, we need only obtain an explicit expression 
for the potential 4, since we are employing the gauge 
A = 0. To find +, we write the obvious equality 

y+[a - (a*u)u- (a*v)v ]  = O  

and insert a from Eq. (129), (a-u) from (154), u from 
(165), and (a *v)  v from Eq. (164). The result of all these 
substitutions is 

V (Y+) & (y+) [E'(Y+)' - E]% VX = 0 .  (170) 

Consider first the case E' = E = 1; from Eq. (159), we find 
(y+)' A 1, so that an appropriate substitution will be 

y+ = csc 0 . (171) 

With this substitution, Eq. (170) becomes 
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and so 

e = * [x + f ( t ) ]  , (173) 

where Vf = 0, but f is allowed to be any function of the 
t coordinate, since again we have chosen the gauge 
A =  V t  = 0. Solving for l/+, we have 

1 - = kysin [ x  + f ( t ) ]  , + 
and according to Eq. (24), the space-time interval in these 
co-moving coordinates has the form 

I .  E = E' = 1, ( y + ) ' L  1 

ds~ = y* { - sin2 [x + f ( t ) ]  dt2 + dx') 

(174) 

Exactly analogous integrations of Eq. (170) for the re- 
maining two permitted combinations of signs lead to 

11. E = -1, E' = 1, O l ( y + ) ' L  co 

In metrics I1 and 111, for example, we must at least have 
-2m < y < 0. 

Returning now to the special case left behind, which 
was characterized precisely by aL = a v = 0, we see that 
it appears as a singular limit. After investigating some of 
its properties, we can obtain the metrics for this situation. 
Reference to Eq. (145) shows that in this case V u  = 0, SO 

that u is a covariant constant vector in the quotient space. 
The integrability condition for this can be found using 
Eq. (60) of Section 11-D; 

where we have used Eqs. (133) and (141). Thus, we 
require 

The dyadics A and E become then 

1 
3 A = -  - A ( ~ u u -  I), 

E = Auu. 
ds' = y2 { -sinh2 [x + f ( t ) ]  dt2 + &2) 

and 

111. E = E' = -1, (y+ ) 'A  1 

cis' = y2 { -cosh2 [X + f ( t ) ]  dt' + d ~ ' }  

These metrics have meaning only when the coefficients 
of dy' and dz2 are positive; this is also clear intrinsically 
from Eq. (162), which shows that 

22 

and we see that a nontrivial solution exists here only for 
A Z O .  Following through a direct integration of the 
dyadic equations leads in one case to the space-time 
metric 

Iv. U l = o ,  A > o  

{ -sin2 [ x  + f ( t ) ]  dt2 + dx' + de2 &'=n 
+ sin2 e a!+*}. (177) 

However, this last may be more simply obtained as a 
limit at the coordinate singularity of metric I, Eq. (174). 
Note that the y coordinate becomes constant, y = 
(3m/A)%; from Eq. (162) it follows that for a * v  = 0 we 
must further put m = ?h ( E / A ) U  (requiring now &/A > o), 
SO y = E (&/A)% in the limit. This suggests inserting 
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where the parameter 6 is then allowed to approach zero. 
The result for all three metrics is 

ds2 { -h2 [ X  + f ( t ) ]  dtz + dx‘ 
A 

where h is the appropriate circular or hyperbolic function 
in each case. The (8, E) 2-spaces have constant curvature 
A-l. Thus, introducing polar coordinates, we see that 
metric I becomes IV, as in Eq. (177), and I1 and 111 
become, respectively 

V. aL = 0, A < O  

1 
- A  

{ -sinhz [ X  + f ( t ) ]  dt2 + dx2 + de2 &’=- 

+ sinhZ e d@} (178) 

VI. a1 = 0, A <  0 

1 
- A  

&‘=- { -cosh2 [X + f ( t )]  dt2 + dx’ + de2 

+ cosh2 e G2} . (179) 

The sp2cP-time metrics I, 11, mc! I11 zre ..E!! kEc?wl.. 

i 

It is easily verified that the indefinite ( x ,  t )  2-spaces in all 
three cases have homogeneous, constant Riemannian 
curvatures, k l / y 2 .  Thus, in the case of metric I for in- 
stance, this 2-space could be written in terms of new, 
non-co-moving coordinates (e ,  ?) as 

yz [ -sinz 0 diz + dez]  , 

and metric I becomes then 

-1 2m py.) 1 dy2 

2m 1 
- YAY‘) dz2. (180) 

Here the ;lines are a timelike isometry of the manifold; 
for A = 0, this is precisely the canonical form of a de- 
generate static vacuum metric of Class B- l  in the nomen- 

clature of Ehlers and Kundt (Ref. 15). A similar rewriting 
of metrics I1 and 111, bringing them to static form, shows 
that I1 is Class B-2, while I11 corresponds to the class of 
analytically extended metrics a -2 ,  where the notation is 
again that of Ref. 15. Summarizing then we may state 
that, excluding spaces of constant curvature, the only 
Einstein spaces admitting nonisometric, irrotational, rigid 
congruences are the degenerate static metrics of Class B, 
and the special singular solutions IV, V, and VI, which 
require A # 0. 

In the co-moving coordinates, the world lines of the 
rigid frame for all these metrics are the lines t vanes and, 
so long as f is some function of t ,  the congruence is non- 
isometric. The process of direct construction we have 
followed demonstrates these to be the only nonisometric, 
irrotational, rigid congruences in Einstein spaces with 
nonvanishing Weyl tensor. In every case, only one arbi- 
trary function of time remains to be specified; in other 
words, irrotational rigid frames in exterior gravitational 
fields have no more than one degree of freedom. Antici- 
pating the results of Section VI, where it is shown that 
rotating rigid congruences allow no arbitrary time func- 
tions, we actually can generalize the preceding sentence 
by deleting the word “irrotational.” 

The relation between the co-moving coordinates of 
Eq. (174) and the static coordinates of Eq. (180) is inter- 
esting for its connection with the geometric construction 
for irrotationai rigid motions in uniformiy curved space- 
time discussed in Section 111. Consider a %space of 
constant, unit curvature (but of hyperbolic metric, for 
the present cases). We could use polar coordinates 0,S 
in this 2-space so that the metric would take the non- 
maximal, but simple, form 

If we are given a convex spacelike curve in this space, 
we may however prefer to introduce orthogonal coordi- 
nates 8,t  based on e by the construction on the convex 
side of e shown in the figure. Tangent geodesics from @ 
are taken as the lines t = constant. Orthogonal to them 
are the involutes of e, the lines 5 = constant; the value 
of 8 labeling one of these is the proper distance to it 
along e from an origin 0 on e. If the distance along @ 
from 0 to the point of tangency of a curve t = constant 
is f ( t ) ,  it follows by inspection that the form for interval 
ds‘ at any point P is being expressed in terms of “moving 
polar coordinates” based on a pole that migrates along &?: 

dS2 = -sin2 [e - f ( t ) ]  dt2 + d@.  (182) 
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In these coordinates, the equation for @ itself is just 
8 - f ( t )  = 0. The congruence of involutes is clearly 
rigid, equidistant. This construction is shown in Fig. 1. 

In Eq. (174), we have this construction, if we identify 
3 with --x. The curves e in the x, t  pseudospherical sub- 
spaces form a spacelike 3-surface in x , y , z , t  space. All 
points in the rigid body achieve infinite acceleration. 

CONSTANT 

Fig. 1. Moving polar coordinates based on a curve e 

VI. ROTATING RIGID FRAMES 

We now inquire whether any nonisometric rotating 
rigid motions exist and, if so, the maximum number of 
degrees of freedom allowed, and the form of any con- 
straints imposed on the time dependence of the accelera- 
tion, angular velocity, or other variables. 

Partial answers to some of these questions have been 
given in recent years (Refs. 7 to 9). Pirani and Williams 
(Ref. 8) show how to construct (by means of a certain 
metric transformation) examples of space-time metrics 
admitting nonisometric, rotating, rigid congruences. Thus, 
they have demonstrated that the Herglotz-Noether the- 
orem is not u l w y s  valid. Unfortunately, their discussion 
does not reveal explicitly the form of the Ricci tensor of 
the manifolds obtained, and it is apparently not at all 

clear whether the associated Einstein or stress tensor is 
physically reasonable. In particular, it seems not to be 
known whether any of their metrics include empty or 
Einstein spaces, nor whether the tangent vector of the 
rigid congruence is the timelike eigenvector of the stress 
tensor. As discussed in the introduction to this report, 
the latter are the most interesting situations physically; 
both cases are characterized by the vanishing of the 
momentum density t = 0. 

In order to discuss the contributions of Rayner (Ref. 7) 
and Boyer (Ref. 9), we shall give up momentarily any 
restriction to Einstein space, and refer rather to the 
general dyadic equations of Appendix B, specialized only 
to what we have called dynumicul rigid bodies (5 = 0, 
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t = 0) with co-rotating basis triads (o = 9). The dyadic 
E is, of course, still time independent (E = 0); and the 
Gauss equation (B-18) reads E = - (P + 3 9 9 ) ,  so that 
we have 

P + 3 b 9  + 3 S h  = 0 .  (183) 

This equation has been quoted in various forms by all 
the mentioned authors. Rape r  combined the trace of 
this equation 

with the contracted Bianchi identity equation (B-29), 
which for S = t = 0 reads simply 

r;= 0 ,  (185) 

to obtain two important results: (1) the local energy den- 
sity p is time independent, and (2) since p = -%Tr P 
[Eq. (B-l3)], we find from Eq. (184) that 

These constraints are thus valid in general for both test 
rigid bodies in Einstein space and dynamical rigid bodies. 
In the dynamical case, they would appear to be of con- 
siderable import for the problem of gravitational radia- 
tion from an asymmetric, rotating, rigid body (a spinning 
rod, for instance). It is difficult to see how such a system 
m i d  radiate energy with these comiraiiiis. 

Returning to the question of the validity of the 
Herglotz-Noether theorem, we can demonstrate that a 
sufficient condition even here is that the angular velocity 
vector be body-fixed, h = 0. For it then follows directly 
from the antisymmetric pari of Eq. (B-14) that v x 8 = n ", 
and from time differentiating the trace and the antisym- 
metric part of Eq, (B-15) that (az) i = 0, so that for a 
rotating body we must have V x a = i = 0, which with 
5 = 0 are the equations characterizing a Killing vector 
congruence. This result can be used to obtain Boyer's 
(Ref. 9) sufficient, but not necessary, conditions on the 
curvature quantities for the validity of the Herglotz- 
Noether theorem. In our notation, his conditions become 
t = 0, P = 'h (Tr P) I and, from Eqs. (183) and (185), it is 
clear that these will suffice. The problem of necessary 
conditions, however, is still entirely open. 

Returning now to the case of rotating rigid frames in 
Einstein space, we have obtained a complete set of dif- 
ferential equations of first order in the local time deriva- 
tives, which govern the evolution of these motions. Thus, 

we can state that, in general Einstein space, the entire 
history of rotating rigid motions is determined by initial 
conditions on any one spatial hypersurface so that no 
arbitrary functions of time (degrees of freedom) are per- 
mitted. In a sense, this incorporates much of the physical 
significance of the Herglotz-Noether theorem. Actually, 
as we shall see, the total set of equations is over-complete, 
since four subsidiary algebraic equations are obtained in 
addition to the differential equations. Isometric motions, 
for which all quantities are time independent, constitute 
a trivial solution of the total set; it may be that these are 
the only solutions consistent with the subsidiary equa- 
tions, in which case the usual statement of the Herglotz- 
Noether theorem would hold. Unfortunately, the algebraic 
complexity of the equations has so far prohibited either 
reducing them to the conditions for isometries, or, con- 
versely, demonstrating one or more particular noniso- 
metric solutions. 

The derivation of the equations depends crucially on 
the commutation of the space and time derivative oper- 
ators for time-independent quantities [ Eq. (54)]; that 
these commute, as remarked in Section II-D, is a special 
property of rigid motions. We start again with the Gauss 
equation (61) for rigid motion in Einstein space 

and the constraint i = 0. The trace of Eq. (187) gives 

and time differentiating we find, of course, that 

In view of this orthogonality property, we can define for 
later use a vector U, by setting 

and in consequence express 9 as 

h = u x 9 ,  

where by definition 

u * S  = 0 .  



. ' 4  ~ * .  

J P L  TECHNICAL REPORT NO. 32-868 

Differentiating this last equation, we can show that 

6 - s  = 0 .  (193) 

The procedure now is to construct additional time- 
constant dyadics from the spatial derivatives of E. The 
existence of a chain of such quantities resulting from re- 
peated spatial differentiation was previously pointed out 
by Pirani and Williams (Ref. S), though not exploited by 
them. The success of this procedure depends on the fact 
that the differentiation process may be selectively applied 
to obtain only equations which do not contain spatial 
derivatives of time-dependent quantities; furthermore, 
with this criterion, the procedure terminates naturally, so 
that finally a complete set results, all first-order differen- 
tial equations in t i m  only. 

We first define the dyadic F by 

where Fs and f are respectively symmetric and antisym- 
metric parts of F, and by commutation (E = 0) it follows 
that 

We obtain the explicit expression for F by substituting 
from Eqs. (66), (68), and (70) into 

and upon resolving find for Fs and f 

Proceeding to the next level of spatial differentiation, 
we define the dyadic G by 

and as before, of course, have 

Some of the other properties of F can be obtained before 
calculating its explicit form. Since E is symmetric, we 
have Tr F = Tr Fs = 0 by Eq. (A-28); by using (A-27), 
(188), and the fact that V E = 0, we find 

(196) 
1 3 
2 2 f = - V (Tr E)  = - - V (V). 

From this and the commutation relation in Eq. (55), it 
follows that 

v xf=O. (197) 

Now taking the divergence of Eq. (194) gives 

but from the commutation relation equation (D-57) of 
Ref. 10. we have 

so that finally also 

Using Eq. (A-27), we find that 

V . F y - L V  x f  - V(TrF') = 0 ,  (203) 
3 1 

so that G is symmetric; and tracing Eq. (201) we have 
according to Eq. (A-28) 

26 

To calculate the explicit form of G', Eqs. (199) and (200) 
are inserted in Eq. (201), and then, using virtually all the 
dyadic equations of Section II-D, it is possible to elimi- 
nate the spatial derivatives of all time-dependent quan- 
tities. This was the criterion for the particular choice of 
G. To assist in the elimination, it is convenient to intro- 
duce a new, symmetric, time constant, dyadic GK by 

GKzsGx + 3E.E - 3(A - Q 2 ) E  

- [ E :  E - 10n' + -An' 3 A2 I .  (205) 1 23 - 
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The lengthy result of all the substitutions then becomes 

[3aa + 2QR + azl] 

- 2 [B + (a*  9) I - 2aS] ," [B + (a 9) I - 2aR] - a *  6 

1 
3 + - [20u2n2 - nuz - 9 Q . E - Q  + Sa*E*a]  I,  (206) 

10 
3 

Tr GK = 28: B - 89*E*R + - a - f  + 5nz (az - A ) .  

(207) 

This completes the derivation of the equations. They 
are all expressed in terms of the following two sets of 
quantities: (1) a, 9, U, B; and (2) E, Fs, f, G K ,  G. The second 
set contains only quantities whose time derivatives van- 
ish; they can, therefore, be treated as arbitrary constants 
whose values may be selected at any point on each world 
line of the congruence. The first set contains 14 scalars 
whose time dependence is governed, either explicitly or 
implicitly, by the 14 scalar equations included in Eqs. 
(191), (193), (199), and the trace-free part of Eq. (206). 
These equations are linear in, and could in principle all 
be explicitly solved for, all the first tim? derivatives. This 
is indeed already accomplished for 9 and B. Further 
differentiation and substituting back would then generate 
the time derivatives of all order in terms of undifferen- 
tiated quantities, so that the entire evolution on each line 
is determined by conditions at one point. 

We have four algebraic constraints left over: Eqs. (200) 
and (207). These must hold throughout time so that, by 
differentiating them and substituting back for all time 
derivatives, we should obtain a further set of four (in 
general new) algebraic constraints. These, in turn, could 
be treated in identical fashion, and so on and on. If this 
process continues to generate a chain of independent 
equations, we should soon be able to solve algebraically 
for a, R, U ,  and B in terms of the second, time-constant, 
set of quantities, and so all the quantities would be time 
constant, and we would have accomplished the reduction 
to isometric motions. This. however, remains to be done, 
and so we cannot exclude the possibility that a very few, 
very special, solutions might exist, for which the above 
described chain of algebraic manipulation would stop, 
self-consistent, but short of the complete reduction to a 
timelike isometry. 
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APPENDIX A 
Summary of Dyadic Notation and Identities 

For reference purposes, we summarize briefly the 
dyadic notation and list some identities used in the paper. 
Let 

ua = uu, a = 1,2,3 

be an orthonormal triad of basis vectors. The index a 
simply labels the vectors and is freely written up or down 
as convenient. Using the dot notation for the scalar prod- 
uct and the Kronecker delta, the orthonormality relations 
read 

Introducing the usual vector cross-product notation and 
the numerical permutation symbol, we write 

where the summation convention for repeated indices 
always applies unless specifically revoked. The unit dy- 
adic may then be written as 

I = UUUU 

In the following, the symbols V and W stand for arbi- 
trary vectors, and M, N, and P for arbitrary dyadics. Ex- 
panding in terms of the basis vectors, 

defines the orthonormal components, Vu and Mas. Tr M 
denotes the contraction M;, and the superscript T denotes 
a transposed dyadic; MT = Mbuuaub. Using the expan- 
sions and Eqs. (A-1) and (A-Z), any dyadic expression can 
be quickly converted to component form and identities 
derived. We have, for instance, 

with the special case 

The transpose identity for these is 

and 

Several double operation symbols are used, with the 
convention that the upper operation acts first: 

In addition, the dyadic symbol M:N is very convenient, 
but requires a special convention; using the upper cross 
first to operate on the "inside" vectors, we let the resulting 
vector stand to the left. Thus, 

and the following relations hold 

M Y N  X = NTzMT, (MZN)T = NZM.  

The double permutation symbol may be expanded to give 
an identity which is best written by transposing the sec- 
ond dyadic: 

MENT = M * N  + N * M  - ( T r M ) N  - (TrN)M 

4- [(TrM)(TrN) - M:N]I, (A-4) 

and so for the trace 

Tr(MzNT) = (TrM)(TrN) - M:N. 64-5) 

Resolving a dyadic M into symmetric and antisym- 
metric parts, we may always write 

M=MS- m x I ,  MT = My + m X I ,  (A-6) 

where MS='/(L(M + M T ) ,  and we have introduced the 
dual vector m defined by 
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to represent the antisymmetric part, 

Two dyadic identities often used are analogous to the 
corresponding vector formulas for transforming triple 
products: 

W * ( V  x M) = ( W  x V ) * M ,  
(A-8) W x ( V  x M) = VW*M - ( W * V ) M ,  

with the special cases 

W * ( V  x I) = w '(I x V) = w x v 
(A-9) w x ( V x I ) =  w X I  x V = v w - ( V * W ) I .  

Also, 

V X M X W = - (WV)zM = - M T z ( V W ) ,  (A-10) 

where the general expansion of the double cross product 
can then be applied to the latter forms. 

Some useful composite identities are: 

(M*N);P = M;(N*P), (A-11) 

( V  x M):N = V*(M;N), (A-12) 

(MZNT);P = - (M;PT)*N - (N;P*)*M. (A-16) 

Note also that we can write 

T r ( V  x M) = ( V  x M):l =V*(M;I) =!Worn, 

which therefore vanishes if M is symmetric. 

(A-17) 

The algebra of the V operator generates many familiar 
vector and dyadic identities which,in the dyadic case, 
grow from the seed formulas 

v (*VW) = ( v q )  vw + * ( V  V) w + qv vw , 
(A-18) 

where q is an arbitrary scalar. Not-so-familiar ones found 
useful in the derivations in this report are 

v * ( M ; N ) = ( V  X M ) : N + M : ( N X  V ) ,  (A-20) 

v ' ( M Z N T )  = -N;(V X MT) - M;(V X NT), 
(A-21) 

V * ( V  x M) = - V * ( V  x M) + ( V  X V ) * M ,  (A-22) 

V (M x V) = ( V  M) x V + MT;(VV), (A-23) 

v x (V x M) = ( V V ) - M  - ( V ~ V ) M  
+ V ( V  OM) - V * V M ,  (A-24) 

V x (M X V) = ( V  x M) x V -  MT$(VV). (A-25) 

Identities involving second-order derivatives become 
complicated and unfamiliar, since they must take account 
of the noncommutative properties of the V operator in 
curved spaces with anholonomic basis vectors. In prac- 
tice, only the commutation relations themselves (Appen- 
dix B) are ever really needed. 

Finally, some special applications of the dual vector 
repiseseiiiaiioii of ~ i i t i ~ p m e t r i c  p r t s  Z:C 

1 1 V V = - ( V V + V V ) - T ( V  2 x V )  x I ,  (A-26) 

- - 1 [ V M T  - V (Tr M)] x I ,  (A-27) 
2 

and 

Tr(V x M) = V*(M;I) = 2 V * m ,  (A-28) 

so that if M is symmetric, Tr ( V  x M) = 0. 
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APPENDIX B 
Summary of the General Dyadic Equations 

I 

The general dyadic equations for a timelike congruence 
were derived in Ref. 10 by introducing an orthonormal 
tetrad field aligned so that the timelike tetrad vector 
everywhere coincides with the unit tangent to the con- 
gruence. The tetrad vectors were denoted by their com- 
ponents, contravariant ,Xp and covariant ,Ap, in an 
arbitrary holonomic coordinate system x p  ( p  = 1,2,3,4), 
where the Latin index ( r  = 0,1,2,3) labels the vectors. 
In this notation, the orthonormality relations become 

,,XP is the unit tangent vector to the timelike congruence 
and “XV (a = 1,2,3) are the spacelike triad vectors. These 
quantities may alternatively be viewed as the transforma- 
tion matrices between two sets of vector bases; one set 
comprises the natural holonomic basis vectors associated 
with a coordinate system xP,  the other is composed of 
orthonormal tetrads which will, in general, be anholo- 
nomic. Using them in this latter sense, any tensor, say 
Fpv, written in the usual coordinate components is con- 
verted to orthonormal components, F,,-, by 

and the inverse transformation follows directly from the 
orthonormality relations; 

F,, = F , ,  X h v .  03-3) 

When the coordinates xp are co-moving, the matrix of 
contravariant tetrad vector components takes an espe- 
cially simple and convenient form; in Section 11-D of this 
report, special notation is then introduced for the time- 
like components: 

where 

The .A and A, are orthonormal and natural components, 
respectively, of a 3-vector A which, with the scalar 4, is 
fully discussed in dyadic terms in Section 11-D. 

The differential characteristics of the timelike congru- 
ence are expressed in the absolute acceleration and angu- 
lar velocity vectors and the symmetric rate-of-strain 
tensor, defined as usual by 

apv = o h ( p ; v )  + a(p O X ” )  . I 

All these quantities are projected into the three-space 
orthogonal to the timelike congruence, i.e., 

After transforming to orthonormal components ( u ~ ,  a,, a,b) 

as in Eq. (B-2), the corresponding three-dimensional 
vector and dyadic quantities are defined by 

where ua is the orthonormal triad of spacelike vectors 
with coordinate components In like manner, the 
various derivatives of these triad vectors are represented 
by a 3-vector O, 

and a dyadic N, 

The indices n, a are from the first portions of their respec- 
tive alphabets and so are understood to take the restricted 
range 1, 2, 3. Also the reciprocal matrix is then 

The vector o is the angular velocity of the orthonormal 
triad vectors relative to Fermi propagated axes, and the 
dyadic N is the three-dimensional anholonomic affinity. 
(See Section 11.) 
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When these dyadic quantities are differentiated, both 
along and orthogonal to the timelike congruence, and 
second derivatives of the tetrad vectors are eliminated 
by means of the commutation law for covariant differen- 
tiation, components of the Riemann curvature tensor, 
Rt , , ,  are introduced. Two equivalent dyadic sets are 
employed to represent the 20 independent components 
of this tensor. Both are obtained as usual by taking ortho- 
normal components. The first is straightfoxward and re- 
sults in three symmetric dyadics P, 0, B (with Tr B = 0) 
and a vector t where 

1 I p --- 1 Eacd E b f g  R c d f g ,  ) 
4 a b  - 

We use the three-dimensional V symbol for projected 
covariant differentiation orthogonal to the timelike con- 
gruence, and a superior dot for the proper time derivative 
along the timelike congruence. These operations are care- 
fully defined in Ref. 10. For vectors and dyadics, this dot 
derivative is not covariant; it signifies the derivative of 
the components in an orthonormal basis triad. The vec- 
tor V + o x V and the dyadic M + o x M - M x o 
are covariant for any transformation of the basis triads 
(leaving the timelike direction unchanged); they are, in 
fact, the derivatives with respect to basis triads which are 
Fermi propagated (w = 0) along the timelike congruence. 

With these definitions, we may write down the 36 
(B-11) general dyadic equations for timelike congruences : 

Va - (S + w x s - s x w) + (it +a x Q) x I = i Qab = R o a o b  9 

1 
g a b  - Eacb tC = 5 Ebcd R o a c d  . 

S . S - 9 X  S-Sx 9 + 9 9 - ( c l z ) l - - a a + Q ,  

(B-14) The second representation depends on the invariant 
resolution of the curvature tensor into the Einstein tensor 
R,, - %Rg,, and Weyl’s conformal tensor, Ct,,,. The 
dyadic B and the vector t occur again and are thus com- V 9 + S x  V =  - 2 a B + ( a * P ) l + B + t x I ,  (B-15) - 
mon to both sets. Here we obtain, in addition to these, 
two symmetric dyadics T, A (with Tr A = 0) and a 
scalar p :  

N + S * . N = S * T X ( V + ~ ) + [ ( V + ~ ) * ( ~ - - ) I I ,  

(B-16) 

1 
4 - Eacd E b f g  Ccd”7 

A and B have been called, respectively, the “electric” and 
“magnetic” components of the Weyl tensor. Invoking 
Einstein’s field equations we identify T as the material 
stress dyadic, t the momentum density vector, and p the 
energy density. The relations between the two sets are 

1 
P + Q - 3 (TrP + TrQ) I 

1 T = -  [-P + Q - (TrQ)I],  

1 
p =  - -TrP.  2 

\ 03-13) 

.-.L ~ 1 1 t x G  c+ a - - c a (-2 G.;.) x 1. Ftiithci i & t i G c s  be 

obtained by tracing these equations and resolving into 
symmetric and antisymmetric parts. In the last equation, 
we have introduced the symmetric dyadic E defined by 

1 
2 

E 5  - P  - - SES - 99 - 09 - BO. (B- 18) 

This is actually a generalized Gauss equation. 

If the timelike congruence is irrotational (9 = 0), it is 
normal to a family of three-dimensional immersed sub- 
spaces whose second fundamental form is just S. The 
dyadic E is then precisely the conservative, or Einstein, 
tensor of the 3-spaces, satisfying the Bianchi identity 
V E = 0. Since in three dimensions the curvature tensor 
has only six independent components, it is completely 
expressed in terms of E by 

The general commutation relations for space and time 
differentiation are rather complicated in this formalism 

3 1  
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because of the anholonomic nature of the reference sys- 
tems. The following list is representative: 

P + ) *  - v (6) = a$ - S* v+,  (B-20) 

(VV). - v (+) = a+ - S* vv 

- (N + S* N) X V ,  (B-21) 

(v x M)* - v x (M) = a x M - s*; VM 

- (N + S* N)': M 

- (N + S*-N)T-M 

+ Tr (N + S**N) M ,  (B-22) 

v )( v+=24n, (B-23) 

V * ( V  x V ) = 2 R * ( 9 + S * * V ) ,  (B-24) 

x ( I  x V)], (B-25) 

where +, V, and M are, respectively, an arbitrary scalar, 
vector, and dyadic. The last three space relations clearly 
look more familiar when 1R = 0 so that immersed 
orthogonal 3-spaces exist. 

By appropriately differentiating the curvature equa- 
tions [(B-14) to (B-17)] and applying the commutation 
relations to eliminate second derivatives, we arrive at the 
dyadic form of the 20 Bianchi identities: 

where B* = B - t x 1. The trace of (B-26) vanishes. The 
trace of (B-27) is a contracted Bianchi identity: 

V * t + [ j + ( T r S ) p ]  =T:S-2a0 t .  (B-29) 

The remaining contracted identities are found in a vector 
equation obtained by subtracting Eq. (B-28) from the 
antisymmetric part of Eq. (B-26); 

V T - [i + o x t + (Tr S) t] = 

t * S  + Q x t - a*T  + pa. (B-30) 

It remains only to verify some other relations which 
are presented in Section 11. It is there shown that the 
quantities defined by 

dt . 
+ = - - t  - , A = V t ,  dr (B-31) 

where t is a timelike coordinate, have a simple inter- 
pretation in terms of the space-time metric written in 
co-moving spatial coordinates : 

In general, these quantities may always be interpreted as 
scalar and vector potentials for the acceleration and angu- 
lar velocity vectors of any timelike congruence. The 
potential equations given in Section I1 are, in fact, almost 

v x Q -  (B* + O  x B* - B* x w) = - a x  Q + p x a 

- [S - (Tr S) I + S2 x I ]  B* 

- SZB*' + (n B*') I + 2 9 t ,  (B-26) 

V x B * * + ( i  + O X  P -  P x 0) = -ax B** f B *  x a 

+ [S - (TrS)I + Q x I 1 . P  

+ S z Q  - (Q.0) x I, (B-27) 

(B-28) 
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trivial consequences of the commutation relations. Apply- 
ing Eq. (B-20) to the t coordinate, we have 

so that using Eq. (B-31) 

+a = -v+ + A  + s * * A .  (B-33) 

Similarly from Eq. (B-23), we obtain 

v x (Vt) = Ztsz, 

or 

2 + B = V x A .  (B-34) 

Finally, the time derivative of the natural vectors 
ea = v f, as given in Eq. (34) of Section 11, is also readily 
obtained from the commutation relation (B-20), by apply- 
ing it to the co-moving spatial coordinate f, for which 

= 0. We find 

or 

(B-35) 

33 



JPL TECHNICAL REPORT NO. 32-868 

REFER E N  C ES 

1. Born, M., Ann. Physik, Vol. 30, No. 1, 1909. 

2. Herglotz, G., Ann. Physik, Vol. 31, p. 393, 1910. 

3. Noether, F., Ann. Physik, Vol. 31, pp. 919-944, 1910. 

4. Synge, J. L., Relativity: The General Theory, North-Holland Publishing CO., 
Amsterdam, Holland, 1960. 

5. Rosen, N., Phys. Rev., Vol. 71, p. 54, 1947. 

6. Salzman, G., and Taub, A. H., Phys. Rev., Vol. 95, p. 1659, 1954. 

7. Rayner, C. B., Compt. Rend., Vol. 248, p. 929, 1959a. 

8. Pirani, F. A. E., and Williams, G., SBrninaire JANET, 5ieme annbe, NOS. 8 and 9, 
1961 and 1962. 

9. Boyer, R. H., Proc. Roy. SOC. (London), A, Vol. 283, pp. 343-355, 1965. 

10. Estabrook, F., and Wahlquist, H., 1. Math. Phys., Vol. 5, pp, 1629-1644, 1964. 

1 1. Lichnerowicz, A., Theories Relativistes de la  Gravitation et de I’~lectromagnbtisme, 
Masson et Cie, Paris, France, 1955. 

12. Berenda, C. W., Phys. Rev., Vol. 62, p. 280, 1942. 

13. M$ller, C., The Theory of Relativity, Chapter VIII, Oxford University Press, London, 
England, 1952. 

14. Fokker, A. D., Rev. Mod. Phys., Vol. 21, p. 406, 1949. 

15. Ehlers, J., and Kundt, W., Gravitation: an introduction to current research, 
Chapter 2, John Wiley & Sons, Inc., New York, 1962. 

34 


